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Abstract

Visible lesions on coral colonies are potential indicators that environmental stressors are
influencing a reef. To test this hypothesis, pairs of near-shore reefs on Taiwan were surveyed along
an anthropogenically influenced gradient that included locations near the cities of Taipei and
Taitung, and more remote reefs off Green Island. Two fringing reefs at Sanya, Hainan Island, a
popular Chinese resort area, were also assessed. Field surveys were undertaken to detect, quantify
and visually describe the occurrence of lesions at each site. Coral mucus samples were collected
from both normal-appearing polyps and lesion-afflicted areas of colonies to assess carbon
requirements of associated microbes. Tissue samples were also collected to identify bacterial
communities inhabiting healthy tissue for comparison with those associated with lesions;
denaturing gradient gel electrophoresis and 16S rRNA sequencing for bacterial identification were
utilized in these analyses. In addition, tissue samples were collected in the vicinity of lesions and

prepared for histological examination.

At sites in Taiwan, lesions were encountered twice as often at the sites near Taipei and
Taitung than at Green Island. The fewest (15/72 sightings) lesions were encountered at the reefs
near Sanya, primarily because there has been nearly an 80% loss of coral cover at Sanya in recent
decades. Overall, tissue loss was the most common lesion recorded (52%), followed by pink
discoloration (27%) and color loss (i.e., bleaching, 15%). Porites was the taxon most commonly
observed with one or more lesions (45% of sightings). Microbes within mucus from lesioned areas
utilized similar carbon sources as microbes from mucus from healthy polyps, but utilized those
sources more than twice as often. Examples of carbon sources utilized by microbes in >50% of the

iX



lesion samples were D-cellobiose, D-mannitol, N-acetyl-D-glucosamine, alpha-cyclodextrin, and
glycogen. Bacterial assemblages on corals were significantly different between Taiwan and China,
among sites, and between water samples and coral samples, but not between healthy samples and
lesions. Bacterial sequences identified in tissue samples from lesions revealed the presence of well-
known disease-related genera, such as Clostridium and Vibrio. Microbes specifically indicating
anthropogenic sources, included Bacillus sp. (sewage sludge) and Geobacillus thermolevorans
(irritable bowel syndrome). Histological examination of tissue samples, particularly those from
lesions characterized as tissue loss, revealed fragmentation and detachment from the mesoglea of
gastrodermis and epidermis, as well as brown granular material, and the presence of ciliates and

small crustaceans.

Corals are susceptible to a variety of diseases. For reefs in the western Atlantic and
Caribbean, occurrences of lesions and characterization of coral diseases have been relatively well
documented. In contrast, many areas in the vast Indo-Pacific, including the reefs of Taiwan and
China, have received much less attention. This study of lesions and associated microbiomes on
nearshore reefs of Taiwan and Hainan Island supports previous research that has revealed higher
incidences of coral lesions and disease in reefs near extensive human populations. The results also
support the hypothesis that many of the microbes associated with coral lesions are part of the
natural coral microbiome and that some microbes can become opportunistic when the host corals

are stressed.



1. Introduction and Literature Review
1.1 Organization of the Dissertation

Chapter 1 of this dissertation provides background information and a literature review
essential to understanding coral disease in the region of the South China Sea. There is a section
in Chapter 1, section 1.5, which is a paper that has been submitted for publication that focuses on
ciliates and their relation to coral disease. Chapter 2 focuses on the rationale, objectives, and
hypotheses. Chapter 3 discusses the range of methods that were used to conduct this study.
Chapter 4 presents the results of this study. The discussion of the results is in Chapter 5.

References are presented in Chapter 6.

1.2 Background

Coral reefs are valued at more than $352,000 per hectare per year for the economic and
environmental services they provide through shoreline protection, areas of natural beauty,
recreation and tourism, and as sources of food, pharmaceuticals, and jobs (Costanza et al., 1997,
de Groot et al., 2012). Corals have become increasingly plagued with diseases in both wild
populations and captive settings (Sweet and Bythell, 2012; Miller and Richardson, 2015).
Common signs include the loss of zooxanthellae, tissue sloughing, abnormal growths, and

mortality (Richardson, 1998; Sutherland et al., 2004; Aeby et al. 2011).

For the purpose of this study, disease is defined as a condition of abnormal vital function
involving any structure, part, or system of an organism (Mosby’s Medical Dictionary, 2009).

Apparently healthy is defined as being free of gross lesions. Gross lesions are defined as any



visible, macroscopic abnormality of tissue. This can include discoloration, tissue loss and growth

anomalies.

Diseases can be caused by abiotic or biotic factors, or a combination of both. Parasites and
pathogens, such as bacteria, fungi, protozoans, and viruses, are considered biotic diseases. Abiotic
diseases result from stress due to changes in the physical environment and are non-infectious, but

can result in increased susceptibility to biotic diseases (Snieszko, 1974; Vadas, 1979).

Although the coral holobiont is a complex system that harbors microbial communities in
its skeleton, tissue, and mucus, one part of my study assessed coral health by focusing on the mucus
layer. Ritchie and Smith (2004) postulated that the normal mucus microbial community protects
the coral from invasive microbes, and when the normal community changes, this may allow for
the development of disease. The resident microbial community, which is critical to the healthy
functioning of the coral holobiont, aids in limiting the abundance of pathogenic microbes within
coral mucus. Under stressful conditions the resident microbial community is replaced by
pathogenic microbes, often Vibrio, and this allows for the development of disease (Mao-Jones et
al., 2010). Aspects of the metabolic activity of the microbial assemblage of coral mucus can be
analyzed using Biolog EcoPlate™ (Gil-Agudelo et al., 2006a), which is a simple, relatively
inexpensive technique that analyzes carbon metabolism of a microbial community (Gil-Agudelo

et al., 2006a).

In addition to changes in the metabolic potential of microorganisms within the mucus layer,
this study examined changes in the microbial community through a molecular fingerprinting
method. Because many marine microbes are uncultivable, molecular techniques such as denaturing

gradient gel electrophoresis (DGGE) are used to study complex microbial communities. DGGE,



coupled with sequencing, has been used in numerous studies to document microbial communities
of healthy and diseased corals (e.g., Chiou et al., 2010; Croquer et al., 2013; Smith et al., 2015;

Glasl et al., 2016).

Histological examination is another useful technique to analyze coral afflictions (Sweet
and Bythell, 2012; Work and Meteyer, 2014). According to Yevich and Barszcz (1983),
histopathology is an important tool in investigating diseases in marine organisms and is useful in
correlating physicochemical and physiological changes with those changes seen at the population
and community level. Therefore, histological examinations observed in coral tissue can be
compared with changes at the biochemical and molecular level in associated microbial

communities.

1.3 Mucus, Microbial Associations, and Environmental Stress

Corals have a powerful defense mechanism: mucus (e.g., Ritchie, 2006). Every coral
produces insoluble, hydrated glycoproteins, which form a viscoelastic gel that is secreted from the
epidermal mucus cells (Ducklow and Mitchell, 1979; Kushmaro and Kramarsky-Winter, 2004;
Bythell and Wild, 2011). The purpose of mucus is to aid in heterotrophic feeding (Brown and
Bythell, 2005), to provide a physical barrier to pathogens (Ducklow and Mitchell, 1979; Cooney
et al., 2002), and to protect the corals from sedimentation (Stafford-Smith, 1993), and desiccation
(Meikle et al., 1988). However, too much mucus can allow bacterial blooms within the mucus and
kill the coral through oxygen depletion, accumulation of sulfide poisons at the coral surface below
the mucus layer, or predation on weakened coral polyps (Ducklow and Mitchell, 1979). Sulfide

poisoning, in particular, has been linked to black band disease, where sulfur-cycling bacteria



produce hydrogen sulfide levels and mycrocystins, which create a toxic environment and lead to
coral tissue death (Richardson et al., 1997; Stanic et al., 2011). Corals including Porites have also
been documented to produce the organic sulfur compound dimethylsulfoniopropionate under
stress (Frade et al., 2016), and Vibrio corallilyticus has been reported to use coral-produced sulfur

compounds as a cue to target stressed corals (Garren et al., 2014).

The mucus makes up a surface mucopolysaccharide layer that varies quantitatively and
qualitatively with each coral species (Meikle et al., 1988). The thickness of the surface
mucopolysaccharide layer can range from less than one millimeter in some scleractinians to as
much as a few centimeters in some gorgonians. Zooxanthellae provide most of the fixed carbon

that makes up the surface mucopolysaccharide layer (Patton et al., 1977).

Corals can also use the microbial community that inhabits the surface mucopolysaccharide
layer as a food source (Sorokin, 1973; Ducklow and Mitchell, 1979). Coral mucus is able to sustain
high bacterial growth, possibly through the degradation of the mucus constituents (Ducklow and
Mitchell, 1979; Kooperman et al., 2007). The bacteria living in the mucus, the mucus itself, and
the mucus degradation products may be used as nutrient sources by the coral (Ducklow and
Mitchell, 1979; Kooperman et al., 2007). Kline et al. (2006) found that, when corals were exposed
to elevated dissolved organic carbon levels, the microbial community experienced accelerated
growth by an order of a magnitude. Furthermore, Nguyen-Kim et al. (2015) found coral mucus to
be a highly favorable habitat for viruses on colonies of Fungia repanda and Acropora formosa and
were more abundant than bacteria and Symbiodinium. Their results support the hypothesis that
viruses might regulate the coral’s bacterial community or surrounding pathogens (Bettarel et al.,
2015). Correa et al. (2013) showed the first genomic evidence of Symbiodinium-infecting viruses

in Orbicella cavernosa.



Several studies determined that the abundance and community composition of microbes
living throughout the water column is significantly different from the community of microbes
living in the coral mucus (Rohwer et al., 2002; Ritchie and Smith, 2004). In fact, the culturable
bacteria within the surface mucopolysaccharide layer can be two orders of magnitude more
abundant than those within the surrounding water column, and they are also many orders of
magnitude more metabolically active (Ritchie et al., 1996; Ritchie and Smith, 2004). However,
there is usually some overlap between coral microbiota and the surrounding seawater, which

indicates that water and mucus interact (Kooperman et al., 2007).

Ritchie and Smith (1995a, 2004) reported that microbial assemblages in coral species
within a genus seemed to have similar metabolic characteristics, indicating that there are specific
relationships between coral taxa and their bacterial communities in the surface
mucopolysaccharide layer. Rohwer et al. (2001) discovered a specific coral-microbial relationship
when they found that one species of bacteria was present on all Orbicella franksi (previously
known as Montastraea franksi; Budd et al., 2012) colonies although they were separated up to 10
km. Rohwer et al. (2002) later found, when studying three massive corals (O. franksi, Diploria
strigosa, and Porites astreoides), that different coral species had distinct bacterial assemblages
even when they were physically adjacent, while corals of the same species had similar microbial
communities even when separated by space and time. Daniels et al. (2011) assessed the spatial
variability of bacterial communities on three O. annularis colonies in the Florida Keys using both
culture-based and culture-independent methods. They found that the bacterial communities varied
among colonies and even on the same colony, indicating that even within a colony the bacterial
community is not homogenous. Daniels and co-authors also reported that the bacterial

communities found on the colonies were significantly different than the bacterial community found



within the surrounding water column, an observation that has previously been noted in other

studies (Rohwer et al. 2001; Ritchie et al., 1996; Ritchie and Smith, 2004).

Environmental changes can lead to changes in the normal microbial community of healthy
corals (Ritchie and Smith, 2004; Rosenberg et al., 2007; Ainsworth and Hoegh-Guldberg, 2009;
Miller and Richardson, 2015). The stability and composition of the mucus layer are affected by
environmental parameters such as water motion, irradiance, and nutrient availability (Brown and
Bythell, 2005; Kline et al., 2006; Kooperman et al., 2007). When corals are stressed, the chemistry
and quantity of the mucus changes (Ritchie and Smith, 1995a). Peters and Pilson (1985) found that
when colonies of Astrangia danae were starved for two weeks and had sediment applied three
times per day, there was a reduction of mucocytes, which resulted in less mucus production.
Ritchie and Smith (2004) postulated that the normal microbial community protects the coral from
invasive microbes; therefore, changes in the normal community provide a chance for the
development of disease caused by pathogenic bacteria. Kooperman et al. (2007) noted that it is
likely that environmental conditions coupled with the coral’s physiol